Nanoparticle-Delivered Transforming Growth Factor-β siRNA Enhances Vaccination against Advanced Melanoma by Modifying Tumor Microenvironment

نویسندگان

  • Zhenghong Xu
  • Yuhua Wang
  • Lu Zhang
  • Leaf Huang
چکیده

Achievement of potent immunoresponses against self/tumor antigens and effective therapeutic outcome against advanced tumors remain major challenges in cancer immunotherapy. The specificity and efficiency of two nanoparticle-based delivery systems, lipid-calcium-phosphate (LCP) nanoparticle (NP) and liposome-protamine-hyaluronic acid (LPH) NP, provide us an opportunity to address both challenges. A mannose-modified LCP NP delivered both tumor antigen (Trp 2 peptide) and adjuvant (CpG oligonucleotide) to the dendritic cells and elicited a potent, systemic immune response regardless of the existence or the stage of tumors in the host. This vaccine was less effective, however, against later stage B16F10 melanoma in a subcutaneous syngeneic model. Mechanistic follow-up studies suggest that elevated levels of immune-suppressive cytokines within the tumor microenvironment, such as TGF-β, might be responsible. We strategically augment the efficacy of LCP vaccine on an advanced tumor by silencing TGF-β in tumor cells. The delivery of siRNA using LPH NP resulted in about 50% knockdown of TGF-β in the late stage tumor microenvironment. TGF-β down-regulation boosted the vaccine efficacy and inhibited tumor growth by 52% compared with vaccine treatment alone, as a result of increased levels of tumor infiltrating CD8+ T cells and decreased level of regulatory T cells. Combination of systemic induction of antigen-specific immune response with LCP vaccine and targeted modification of tumor microenvironment with LPH NP offers a flexible and powerful platform for both mechanism study and immunotherapeutic strategy development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 ...

متن کامل

Platelets subvert T cell immunity against cancer via GARP-TGFβ axis.

Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We show that genetic targeting of platelets enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming g...

متن کامل

Tumor-promoting functions of transforming growth factor-β in progression of cancer

Transforming growth factor-β (TGF-β) elicits both tumor-suppressive and tumor-promoting functions during cancer progression. Here, we describe the tumor-promoting functions of TGF-β and how these functions play a role in cancer progression. Normal epithelial cells undergo epithelial-mesenchymal transition (EMT) through the action of TGF-β, while treatment with TGF-β and fibroblast growth factor...

متن کامل

Dasatinib promotes the expansion of a therapeutically superior T-cell repertoire in response to dendritic cell vaccination against melanoma

Dasatinib (DAS) is a potent inhibitor of the BCR-ABL, SRC, c-KIT, PDGFR, and ephrin tyrosine kinases that has demonstrated only modest clinical efficacy in melanoma patients. Given reports suggesting that DAS enhances T cell infiltration into the tumor microenvironment, we analyzed whether therapy employing the combination of DAS plus dendritic cell (DC) vaccination would promote superior immun...

متن کامل

TGF-β Mediated Crosstalk Between Malignant Hepatocyte and Tumor Microenvironment in Hepatocellular Carcinoma

In this article, we have reviewed current literature regarding the regulation of hepatocellular carcinoma (HCC) by the interaction of malignant hepatocytes and their tissue environment through cytokine signaling, here represented by transforming growth factor-beta (TGF-β) signaling. We have discussed responses of TGF-β signaling in transition of hepatic stellate cells to myofibroblasts (MFBs), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014